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Abstract— This paper presents an integrated speech enhance-
ment (SE) method for the noisy MRI environment. We show
that the performance of SE system improves considerably when
the speech signal dominated by MRI acoustic noise at very low
SNR is enhanced in two successive stages using two-channel
SE methods followed by a single-channel post processing SE
algorithm. Actual MRI noisy speech data are used in our
experiments showing the improved performance of the proposed
SE method.

I. INTRODUCTION

FUNCTIONAL MRI (fMRI) is an important tool for

investigating the human brain function. During FMRI

experiments, researchers (in a control room) usually com-

municate verbally with the patient (in the scanner room) to

give instructions and monitor the brain activity in response

to the various questions and auditory stimuli. However,

strong acoustic noise (noise levels greater than 120 dB SPL)

generated by the scanner and the ancillary equipments in the

MRI room overwhelms the subject’s speech and interferes

with diagnosis and imaging process [1]. The enhancement

of this corrupted speech signal and improvement of the

auditory communication is an existing challenge in FMRI

research [1],[2],[3]. The background noise component must

be considerably reduced to ensure reliable speech perception.

At the same time care should be taken to minimize the

distortion hence to preserve the non verbal cues of the

speech signal. FMRI acoustic noise has a dominant periodic

component in it. In such type of noise signals the most

trivial solution would be to use a comb filter to suppress

all the noise harmonics. This is not a pragmatic solution for

suppressing the FMRI acoustic noise due to the fact that

there are many peaks present under 8 kHz (Fig.1) which are

almost equally distributed over the frequency range.

As far as the patient head movement is concerned, our ex-

periments in the MRI machine confirm that head movement

This study was supported by the VA IDIQ contract number VA549-P-
0027 awarded and administered by the Dallas, TX VA Medical Center. The
content of this paper does not necessarily reflect the position or the policy
of the U.S. government, and no official endorsement should be inferred

Nishank Pathak is a Graduate Teaching Assistant at the University of
Texas at Dallas, Richardson, TX 75080 USA ( phone: 214-830-0799; fax:
972-883-2710) nishank.pathak@student.utdallas.edu

Ali A Milani is a Graduate Research Assistant at the
University of Texas at Dallas, Richardson, TX 75080 USA
ali.a.milani@student.utdallas.edu

I. M. S. Panahi is an Assistant Professor with the Department of
Electrical Engineering, University of Texas, Dallas, TX 75080 USA :
issa.panahi@ieee.org

R. Briggs works with the Department of Radiology, Univer-
sity of Texas Southwestern Medical Center, Dallas, TX 75390 :
richard.briggs@utsouthwestern.edu

Fig. 1. Spectrum of FMRI noise band limited to 8 kHz

inside the head matrix of the machine is very limited due to

the padding provided around the head.

In this paper the performance of the two channel speech

enhancement [2] is improved by using an integrated speech

enhancement method. The proposed algorithm consists of

an adaptive filtering stage followed by a conventional single

channel speech enhancement algorithm. The organization

of the paper is as follows. In Section II we introduce

the general two-stage speech enhancement architecture and

describe various algorithms used in the two stages. Section

III describes the data acquisition setup used. Section IV

reports the experimental results and compares the different

methods used in our experiments. Section V concludes the

paper.

II. INTEGRATED SPEECH ENHANCEMENT

ALGORITHM

In this section we propose a new integrated speech en-

hancement system which is designed for low SNR condi-

tions. The idea is to use a two channel speech enhancement

method as the first stage to increase SNR prior to the second

stage. The second stage is a single channel post processing

algorithm.

A. Stage 1: Two channel speech enhancement algorithm

In the proposed structure, the first stage is a two channel

speech enhancement algorithm using adaptive filtering [2].

In this method (Fig.2) a microphone is placed near the noise

source to record the noise signal as the reference noise.

The second channel is another microphone placed near the
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Fig. 2. 2-Channel Speech Enhancement.

speaker that records the speech which is contaminated with

the background acoustic noise. An adaptive filter is used

to estimate and suppress the noise in the second channel

from the reference noise. The performance and stability of

adaptive filters is highly related to the eigenvalue spread of

the reference noise. Since FMRI acoustic noise has a very

high eigenvalue spread (order of 103 compared to 1 ,for the

white noise), in order to improve the system performance,

the subband adaptive filtering algorithm given in [4] has

been used which not only results in improved stability and

performance but also reduces the computational complexity.

The filterbank structure is shown in Fig.3.

B. Stage 2: Single channel post processing algorithm

As mentioned before, a conventional single-channel

speech enhancement algorithm is used as the second stage. In

this paper we compare the performances of three categories

of single-channel speech enhancement methods which are

spectral subtraction, sub-space, and MMSE [5]. The sub-

space algorithm used here is the perceptual KL transform

[6] which incorporates human hearing properties in speech

enhancement. This method is chosen to reduce the distortion

in speech which is generally caused by the subspace class of

algorithms [5]. Among the MMSE methods, the widely used

LOG-MMSE [4] algorithm and among the available spectral

subtraction methods, the over subtraction algorithm [7] are

chosen. In the following subsections the three algorithms are

briefly explained.

1) Perceptual K-L Transform (PKLT): PKLT is an eigen-

value decomposition method which uses the masking prop-

erty of the human ears in eigenvalue domain. The filter

generated by this algorithm is given by [6] H = U1GUH
1 .

Where U1 is the unitary eigenvector matrix spanning the

signal subspace and G is the gain matrix given by G =
diag(g1, . . . ,gq) and gi = e−νξi/min(λs,i,θi) where ν is the

parameter which controls the tradeoff between residual noise

level and the signal distortion. λi,s are the eigenvalues in

the signal sub-space, ξi is the noise energy in the spectral

direction of the eigenvectors of speech covariance matrix and

θi are the masking energy in the spectral direction of the

eigenvectors of speech covariance matrix.

2) Log Minimum Mean Square Estimate (LogMMSE):

As described in [8] this estimator minimizes the mean-

square error of the log-magnitude spectra E{(log(xk) −

Fig. 3. The block adaptive processing algorithm proposed by [4]

log(x̂k))
2}. The optimal LogMMSE estimator can be ob-

tained by evaluating the conditional mean of log(x̂k), i.e.

log(x̂k) = E{log(xk)|yk}and assuming a Gaussian model of

the noise and speech we get

x̂k =
ξk

ξk +1
exp{

1

2

∞
∫

vk

e−t

t
dt}yk (1)

yk = xk +dk (2)

x̂k is the estimated magnitude of the clean speech. xk is the

actual magnitude of the clean speech. yk is the noisy speech

and dk is the nosie at frequency ωk. ξk is the apriori SNR (

Signal to Noise Ratio).

3) Spectral Subtraction: Spectral subtraction subtracts the

estimated noise energy from the noisy speech file. Over sub-

traction algorithm [7] estimates the clean speech magnitude

using

|x̂(ω)|2 =







|ŷ(ω)|2 −α|d̂(ω)|2 for

|ŷ(ω)|2 > (α +β )|d̂(ω)|2

β |d̂(ω)|2 else
(3)

α and β are the over subtraction factor and spectral floor

parameter, respectively

III. DATA ACQUISITION SETUP

The fMRI noise was recorded from a 3 Tesla Siemens

Magnetron Trio. The acoustic signal was recorded using

a diffuse-field microphone that had an Omni-directional

response and a good dynamic range. 30 second segment

of the analog data was digitized at 64 kHz sampling rate

using NI PCI 4472 A/D board. LabVIEW 8.0 was used to

control the data acquisition. Three microphones were used.

One was held by the subject speaking the sentences from

the NOIZEUS database [5] and the other two microphones

were placed on the outer side of the head matrix to collect

the reference noise simultaneously (Fig.4).

In addition to this, we simulated the actual setup in the

Laboratory using a manikin and a test bed mimicking the

MRI bore to get a close estimate of the amount of speech

enhancement, as the clean speech was not available from the

UTSW data. We played pre-recorded MRI noise using NI

6733DAC through loudspeaker-A. The frequency response
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Fig. 4. Data collection experiment in a 3-T MRI machine

of loudspeaker-A ranged from 55 Hz to 20 kHz with a

maximum power output of 125 W. The clean speech signals

were played through another loudspeaker (referred to as

loudspeaker-B) and the SPL of the speech at loudspeaker

B was kept 10dB higher than the noise SPL at loudspeaker

B because humans tend to talk 10dB louder than the back-

ground noise. The loudspeaker-B was placed close to the

mouth of the manikin and clean speech was played from

NOIZEUS database using NI6733DAC. The reference noise

and the corrupted speech signals were acquired using NI4472

DAC.

IV. SIMULATION AND RESULTS

To evaluate the performance of the algorithm, the actual

data recorded from the UTSW was used. The original data

sampled at 64 KHz was decimated by factor 4 and down-

sampled to 16 KHz because, most of the energy of speech

was concentrated below 8 kHz. The time waveform of the

one of the recorded sentence is shown in Fig.5(a). The

uniform subband adaptive filtering (filter bank) was used.

32 subbands were selected and a noise canceling filter of

length 1024 was trained by the first 2 seconds of data.

This assumption is valid because there is no speech during

the initial few seconds of the data. Moreover in any MRI

scan experiment the patient does not start speaking unless

instructed to do so by the operator. This can give ample

amount of time to the operator for training the filter. The step

size of 0.1190 was used to train the filter. In the second stage,

we used a 20ms hamming window for spectral subtraction

and PKLT, and a 32ms hamming window for LogMMSE.

The residual noise was measured from the 100 ms of silence

(i.e. no speech signal) frame after the first 20000 samples

since the speech starts only after 30000 samples. The residual

noise was measured as 20log10(||xe||/||xn||) where ||xe|| is

the second norm of 100ms of the silence segment of the

enhanced signal, and ||xn|| is the second norm of the 100ms

of the silence segment of the noisy signal.

TABLE I

PERFORMANCE OF ALGORITHMS ON RECORDING FROM UTSW

Segmental SNR

Two channel enhanced (stage1) -5.0852
PKLT (stage 2) -18.824
Spectral Subtraction (stage 2) -15.3058
Log MMSE (stage 2) -22.3219

TABLE II

PERFORMANCE OF ALGORITHMS ON RECORDING FROM LAB

Residual noise (dB) PESQ

Original noisy 1.53
speech
Two channel -16.083 2.5195
enhanced (stage1)
PKLT (stage 2) -34.3551 2.5240
Spectral Subtraction (stage 2) -27.077 3.0458
Log MMSE (stage 2) -37.2404 3.0345

Noise Suppression by itself is not an accurate measure

of speech enhancement. As a standard objective measure we

also used perceptual evaluation of speech quality (PESQ) [9]

as an enhancement measure because it was proved in [5] that

PESQ gives the best estimate of speech enhancement. The

problem in using PESQ is that we need access to the clean

speech for the enhancement estimation. Since this was not

possible with the actual MRI experiment data, we used the

simulation recordings done in the lab as described in the last

section for the measurement of PESQ. Table I and II show

the results for both data sets.

V. CONCLUSION

The paper demonstrated that the noise suppression is

improved in a dual stage enhancement when compared to a

single stage two channel enhancement and hence the fatigue

of the listener is reduced.

After adding a second stage we found that though PKLT is

very aggressive in noise suppression it is very high on com-

putation and has a lower PESQ measure than LogMMSE.

Also, subjective tests done on human subjects have shown

that LogMMSE has the least distortion on the speech signal

[5]. Spectral subtraction is found to be highly prone to

musical noise and the noise suppression is not as good as in

the other two algorithms. Hence there is a tradeoff between

complexity and performance.
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